raredecay.tools.estimator module

Created on Sat May 21 12:02:58 2016

@author: Jonas Eschle “Mayou36”

class raredecay.tools.estimator.Mayou(base_estimators=None, bagging_base=None, stacking='xgb', features_stack=None, bagging_stack=None, hunting=False, transform=True, transform_pred=True)[source]

Bases: rep.estimators.interface.Classifier

Classifier for raredecay analysis

blablabla

Parameters:base_estimators (dict('clf': classifier OR keyword-parameters)) –

Contains all the level-0 classifiers. The key is the name of the classifier and the value is either a prefitted classifier or a dictionary containing the keyword arguments to instantiate such a classifier.

If no pre-trained classifier is provided, the key-value has to be one of the following:

  • ‘xgb’ creates an XGBoost classifier
  • ‘rdf’ creates a Random Forest classifier
  • ‘erf’ creates a Forest consisting of Extra Randomized Trees
  • ‘nn’ creates an artificial Neural Network from TheaNets
  • ‘ada’ creates an AdaBoost instance with Decision Trees as basis
  • ‘gb’ creates a Gradient Boosted classifier with Decision Trees as basis
fit(X, y, sample_weight=None)[source]
get_params(deep=True)[source]
predict(X)[source]
predict_proba(X)[source]
stacker_test_on(X, y, sample_weight=None)[source]

Return report for the stacker only

stacker_test_on_lds(lds)[source]

Return report for the stacker only

staged_predict_proba(X)[source]
test_on(X, y, sample_weight=None)[source]
test_on_lds(lds)[source]